Exponenciales y Logaritmos

 La notación científica

Se emplea para simplificar cálculos y tiene dos propósitos: uno es la representación concisa de números muy grandes o muy pequeños y, el otro, la indicación del grado de exactitud de un número que representa una medición.

Para los dos propósitos se usan potencias de 10, por ejemplo: podemos decir que la velocidad de la luz es de trescientos millones de metros por segundo, o también de 300 000 000 m/seg. Si hablamos de grandes cantidades de bytes, se puede decir que la capacidad de almacenamiento de datos de una gran computadora es de 500 Terabytes, lo que equivale a 500 000 000 000 000 bytes. Si nos referimos a la longitud de onda de los rayos cósmicos, se podría decir que es inferior a 0,000000000000001 metros.

Los logaritmos

En 1614 John Napier publicó el Mirifici logarithmorum canonis descriptio... donde, mediante una aproximación cinemática, pone en relación una progresión geométrica con una progresión aritmética. La primera es de las distancias recorridas con velocidades proporcionales a ellas mismas, la segunda, la de las distancias recorridas con velocidad constante; éstas son entonces los “logaritmos” de las primeras (el neologismo es de NAPIER).

En 1619 apareció una segunda obra, Mirifici logarithmorum canonis constructio.... donde el autor explica cómo calcular los logaritmos.

Henry Briggs (matemático de Londres), había descubierto la importancia de estos trabajos y retomó la idea fundamental, pero consideró una progresión geométrica simple, la de las potencias de 10, en 1617 publica una primera tabla con 8 decimales. El logaritmo de un número x es, por lo tanto, definido como el exponente n de 10, tal que x sea igual a 10 elevado a n.

Tomado de: Aritmética y Álgebra. ARTURO AGUILAR MÁRQUEZ, FABIÁN VALAPAI BRAVO VÁZQUEZ, HERMAN AURELIO GALLEGOS RUIZ, MIGUEL CERÓN VILLEGAS, RICARDO REYES FIGUEROA. 1ra Ed. 2009.

No hay comentarios.:

Publicar un comentario